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Brownian motion in short range random potentials
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A numerical study of Brownian motion of noninteracting particles in random potentials is presented. The
dynamics are modeled by Langevin equations in the high friction limit. The random potentials are Gaussian
distributed and short ranged. The simulations are performed in one and two dimensions. Different dynamical
regimes are found and explained. Effective subdiffusive exponents are obtained and commented on.
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[. INTRODUCTION this problem where Langevin equations have been used as
the basic moddl6—9], but only a few numerical simulations
Since the pioneering work of Einstéfift], it has been well have been reported up to nd®]. Thus there is very little
known that the motion of a free Brownian patrticle is randominformation on how the theoretical results can be compared
and isotropic. It is of diffusive nature, with a bare diffusion with real simulations.
coefficientv, determined by the mean square displacement In this work, we present an extended numerical study of
the random diffusion of independent particles embedded in a
d ) 5 random correlated potential. A key point, which is the cor-
21: (AX{(t)) =(Ar<(t))=2dut, (1) rect statistical generation of the potential, is also discussed.
The roles of the potential parameters, intensity and charac-

whered is the dimension of the space. The diffusion coeffi- teristic Iengt.h are studied. Numerical simulations for one and
two dimensions are performed.

cient v is proportional to the absolute temperature of the In Sec. Il the model and noise characteristics are pre-
system, indicating which is the origin of this type of random T lain th ical alaorith P
motion. The brackets indicate statistical ensemble average gfanted. In _Sec. I_”’ we explain the numerical algorithms use_d
many independent particles. The distribution of particlesand the_ simulation set up. Results are presented and dis-
spreads homogeneously in all directions, as in a normal difcussed in Sec. IV.
fusion process. A very simple way to describe this motion is
to use a Langevin equation in the Schmoluchowsky limit. Il. MODEL
In this paper we consider the motion of the same Brown-
ian particles in a random potential formed of wells and hills
whose location and magnitude are random quantities. In thi
case, particles do not move randomly in all directions as in x=—V'(x)+ &(t) 3)
the former example, but they follow, mostly, the easier paths ’
connecting wells, remaining long time intervals in the deep-where the Cartesian components of the Gaussian white noise
est wells. The mechanism of the motion is barrier crossing(¢) have zero mean value and correlation
So, when we consider an ensemble of these noninteracting

Our starting point is a Langevin equation for Brownian
garticles in the high friction limi{the Smoluchouski limjt

particles, instead of a homogeneous distribution spreading (&(D&(t"))y=2v5;(t—t'). 4
through all space, what we find is a set of localized regions _ . _ _ .
(wells) where particles spend most of the time. The potential we will consider heré(x) is a Gaussian

For very large temperature values)( with respect to the ~short ranged correlated variable, with zero mean value and
relative magnitude of the potential wells, one can define aforrelation
effective diffusion coefficient such as in Ref&,3]. Never- , ,
theless, a consistent analysis of the numerical trajectories (VOV(X'))=g(x=x")q. 5
seems to indicate that the regime is subdiffusive with a bett

description in terms of effective exponents, e‘Y‘h|s is a nonidealized potential such as white correlated

noise, and it can represent more realistic situations. The po-

208\ +Zei tential is described by only two parameters: its effective in-
(Ar(t))~tf, (2 tonsit
ensity e,
Diffusion in random static potentials has been a subject of .
arich variety of studies, most of them using master equations = f d g(x)g, (6)
[4-6]. Very powerful theoretical tools have been applied for 0
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FIG. 1. Comparison of the correlation functiog(r), from the predicted theoretical form and our simulation for the one- and two-
dimensional cases 1) and 2D(b).

and its correlation length, X=X(t)+F(X)A+¢ (10)
1 0
)\zz—f d9% x?g(X)g. 7 — A
elo 9(X)a @) X(t+A)=x(O) HFIXOT+FXI5 +& (1D
In this way, forA—0, it is possible to recover the white . .
IS way 1S PO whereF (x) = —dV(x)/dx is the force, and’s are Gaussian
noise limit for the same intensity. d b : d vari I
In what follows we will assume to be of the form random nUMDBErs of Zero mean an varianceX(p, con-
structed with standard Gaussian random number generators.
g(|x—x’|)=g(0)de*‘xfx"2’m2), The generation of a random potential with prescribed

characteristics is not as standard as the generation of white
noises suclE. We assume that the potential is defined in the
. ®) corners of each cell and we hat values of it, with peri-

(27)92)\d odic boundary conditionfl1]. The potential is constructed
in the corresponding Fourier spavék),

This is a short range potential with characteristic length

and strength controlled by the parameter V(k)=(g(k)g)*? n(k), (12

In Refs.[6,8,9 a different prescription was taken. Instead
of the potentialV(x), they took the forcd=(x). The equiva- whereg(k)4 is the Fourier transform of the correlation func-
lence between both descriptions is easily seen, tion (5), and n(k) are Gaussian random numbers of zero
mean and correlation,

9(0)4=

2
a(|x=x")=(F(X)F(x"))=

o 3XD- @ (1K) 9(K)Y= s 0- (13
Nevertheless, no correlation length appears explicitly in theif Order to obtain this type of ant!correlation,variables are
approach. We will comment on this point below. constructed in the following way:

1
IIl. NUMERICAL ALGORITHM AND _ ;
POTENTIAL GENERATION 7(k) 21/2[Xr(k)+lx'(k)]’ 14
Now we will review the main steps in the numerical
implementation of the problem we are studying. The equa- 7(0)=x:(0),
tion of motion (3) is numerically solved by means of a sec- ]
ond order predictor-corrector algorithfil0]. The motion ~Where x are Gaussian random numbers of zero mean and
will take place in ad-dimensional space discretized i ~ variance equal to 1, and the subindexemdr indicate the
cells of sizeAx{. The linear size of the system lis= NAX. real and imaginary parts Of The Fourier inverse transform_
Initially, 250 particles are uniformly randomly located in ©f V(k) will give the potential values at the corner cells. This
each one of four domains of linear sité4, covering the Procedure guarantees the statistical propefti@ of defini-
whole system. The simulation is stopped when a first particidion (5). .
runs a distance of the order bf4. The force values in the corner cells are calculated from
Here we present details for the one-dimensional ¢ase  the discrete symmetric derivative ¥{(x),
Fig. 2). The two-dimensional case is easily generalizssk
Fig. 1. The position of each particle for each time step of
integrationA is obtained as

_ V(X-1)—V(Xj+1)

F(x;) 57

(19
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FIG. 2. Potential in one dimensiqdashed lingand the density !
of particles after some timep(0) is the uniform initial particle FIG. 3. Average mean square displacementss 8 for a andb,
density. A=4 fora’ andb’.)
However, during the numerical integration of EQ), we The solution of the deterministic equation of motion,

need to evaluate the force values for any point inside thevhen £(t)=0 in Eq. (3), shows that the mean square dis-
simulation region. These values are generated by linear ilplacement, over the initial densip(0), is
terpolation from the last obtained discrete forces as

(AX(1)2)=(x2)(e~ N —1)2, (18)
F )_F(Xi)(xi+1_x)+F(Xi+1)(x_xi)
(0= 2 ' A uniform initial distribution p(0) in the interval &\, \)
18 shows that(x3)=(\?)/3. Then two limiting behaviors are
Xe(X; Xi41). extracted from Eq(18).

(a) For early times, we have that

This numerical scheme can be improved, but as longas
<\ no important errors are made. (AxX(1)2)~ ‘e (19
)\3

IV. NUMERICAL RESULTS AND THEORETICAL . . . .
PREDICTIONS (b) For large times we obtain a frozen regime, which satu-

rates to values

For the stochastic dynamics of an overdamped Brownian
particle in a random potential, in our numerical simulations, (AX(1)2)~\2. (20)
we have observed several time regimes. In the early stages of
the evolution, one can identify two different regimes as func-  In Fig. 3, our numerical simulations show these two re-
tion of the noise: a deterministic regime for very small noisegimes. In particular, the early regime described by @§) is
intensities, and a bare diffusion regime for large noise. Inseen in the trajectories label lyandb’ of this figure. Both
later stages, one can observe two other regimes: either @ases have the same value i3, and therefore they ex-
subdiffusive regime for noise intensities that are not toohibit the same short time behavior. Also, ttfepower law is
small, or a frozen regime if noise is very small. also clear in these trajectories.

These different dynamical regimes can be clearly seen The long time regime of Eq(20) is also present in the
with an appropriate selection of the parameters. Here we Wilirajectories labeled by andb’ in Fig. 3. It is clear that the
review the theoretical and numerical aspects of the first threfinal frozen mean square displacement values are controlled
regimes. The last one is commented upon later in this segnly by \. In particular, with the data used, the final value of
tion. (Ar?2(t)) for caseb (A =8) is four times the one correspond-

ing to caseb’ (A=4).
A. Deterministic short time regime

For a very small noise intensifja small bare diffusion B. Bare diffusion regime

compared with(g(0)4)Y?] particles behave deterministically, Here we consider the case of the short time regime for a
relaxing from their initial position X,) to the bottom of the noise intensity that is not very small. Within the same ap-
nearest well of the stochastic potential. This behavior can bgroximation used in the deterministic regime, a parabolic
understood if every particle is assumed to relax to a potentigbotential, particles relax to the bottom of the well, but the

well approximated by a parabola. The parameters definininfluence of the noise is manifested and the particles perform
the parabolic geometry are taken from the potential average Brownian motion. The equation of motion with the as-

height[ a=g(0)%?] and potential average width §3: sumed potentia{17) is now

XZ

1 : axX
V(X)NEQP. (17) X=_§+§(t). (21)
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8 ‘ : to overpass the barriers limiting the well in which they were
7 initially located. In this regime, depending on the noise in-
tensity, particles can visit several wells by a barrier crossing
process. We expect that this regime is not of a diffusive
nature with effective exponents depending on the system pa-
e rameters: the bare diffusion coefficient)( the potential
=2, v=02 strength €), and its characteristic lengthn]. With these

eff 1.4

PSR three parameters, the only possible adimensional combina-

®e=12,v=0.1 I i
2 -2:24,::0.1 tion is

®c=4, v=0.1

Ae=24 =4

e g(0)g
%0 100 200 30.0 d 2 2 (24)
: Ay %
9(0)/v

FIG. 4. Effective exponents vs the adimensional parameterThis quantity has to be considered as the most relevant pa-
Solid symbols refer to the 2D case, and open symbols to the 1mameter for this problem.
case. Numerical simulations have been performed, in one and
two dimensions, for different values of the system param-
The mean square displacement, over the noise realizatiorsers. The effective exponents have been extracted from the
and the initial density distribution, is then trajectories of the mean square displacement by numerical
fitting of a power lawA+ Bt%ff, The set of exponents versus
the adimensional quantiffEq. (24)] is presented in Fig. 4.
According to renormalization group calculatidis8,9], a
(22 linear dependence of the type

2
(AX(O)= (e 124y (1-e 2,

and two more limiting behaviors, can be appreciated. g(0),

(a) For times larger thamt/\?, we find that zgi=a+b (29
g 2

2y
(AX(D)%)~2ut. 23 is expected ford=2. Numerical fitting in thed=2 case

(b) For very large times, we recover the same saturatiod1VeS the following values for the free parameteas: 1.01
values as in Eq(20). andb=0.023. The value obtained fdris almost two times

So, independently of the potential parametess\], for smaller than the theoretical calculated vahre 1/87 [6,8].
neither small nor large times there exists a diffusive regime, Eauation(25) looks very similar to the theoretical predic-
with the bare diffusiorv. tion expression, witho(0) instead ofg(0) [see Eq.(9)];

The regime described by E(3) is seen in cases labeled however the theoretical result does not make any reference to

by aanda’ in Fig. 3. We see how the early stages are clearlythe characteristic length [6,8_]. This could explain the dif-_
diffusive with the bare diffusion parameter The theoretical [erence between the numerical value and the one obtained

result(22) saturates as in E420), but this regime is not seen from the theory. The characteristic length should be explicit

now because a new physical mechanism starts, which is baf? @1y short range force or potential.

fier crossing. The subdiffusive character of the new regime is | € data dispersion in Fig. 4 gives an (:de_a of the error
manifested for large times of the trajectories in Fig. 3. bars. In general, the errors are lower than 5% #2, and all
our data correspond to a unique potential. So our statistical

average is over an ensemble of “particle6000 and not
over an ensemble of different “potentials.” If the system
This is the most important regime in our study. When thesize is large enough, with many wells and hills, a second
noise intensity is not too smdly(0)4/v?><40.0], the system average over different potentials is not a crucial point. Nev-
clearly exhibits, in our numerical simulations, a subdiffusiveertheless, for very small values of the intensity of the noise,
regime. It starts when the bare diffusion regime saturates gsarticles “see” very few wells and the statistic is poorer.
seen in Fig. 3. In other words, it starts when particles are able In Fig. 5,d=2 potential level curves and particles loca-

C. Subdiffusive regime

FIG. 5. Position of 1000 particles &t 8000
in the same potentiale=24.0, A=4.0) with a
differenty. v=0.245(a) andv=0.1(b). Particles
are initially uniformly randomly located at the
central square. Contour lines correspond to three
levels of the underlined potential wells.
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tion are shown with high and low noise intensitiesmpared ranged potential. The earlier stage of the motion has been
with g(0),]. In Fig. 5a), particles spread out, covering a satisfactorily explained as a function of the system param-
considerable space distance from the initial location as in theters. The later subdiffusive character of the motion is clearly
homogeneous diffusion case. In Figbh this quasihomoge- seen in two dimensions. The effective exponents obtained
neity is lost, and particles mimic the underlining potential agree with existing theoretical predictions, provided the dif-
pattern. In this last case, many more statistics would bgerent system parametefisoise intensity, potential strength,
needed to obtain reliable values for the effective exponentgnd characteristic lengtrare properly taken into account.
due to the small number of wells explored. In any case, th&yith respect to the one-dimensional case, numerical simula-
general trend of the nondiffusive behavior is clear in ourtions do not match theoretical predictions very well. To see
simulations. the effects predicted by the theory, very long time simula-

Simulation results fod=1, plotted for reference in Fig. tions in larger systems and ensemble potential averages
4, deserve an explicit discussion. A linear fitting, like in Eq. would be required.

(25), for parameters. andb gives the values 1.01 and 0.038,
respectively. Moreover, theoretical studigd predict that,
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